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Abslract. We study the spectral eigenvalue statistics of tight-binding random matrix ensembles 
in the presence of Andrev scattering (AS). The nmest-level spacing distribution function is 
shown to fallow a disbibution PAS@) which is distinct from the three well known Wigner-Dysw 
classes describing disordered ' n o d '  conductors. Numerical results for PM(s )  are obtained 
for n three-dimensional random tight-binding Hamiltonian and also for il two-dimensional 
transmission matrix. both including Andreev sealtcring. The PM(s )  disvibution is also 
analytically reproduced and is shown 10 coincide with that obtained by folding a GOE metallic 
spectrum m u n d  E = 0. 

1. Introduction 

It is known I1-51. that statistical properties of electronic spectra in disordered metals can 
be understood by applying Wigner-Dyson random matrix theories (RMT). Such theories 
have a wide range of applicability extending to diverse areas of physics, the most recent 
of which i s  the quantum mechanical characterization of classically chaotic systems [&IO]. 
The reason for this general applicability can be traced to the fact that RMT focuses only 
on the symmetry of the original random matrix Hamiltonian, with real, symmetric matrices 
represented by the Gaussian orthogonal ensemble (GOB), complex Hermitian matrices by 
the Gaussian unitary ensemble (CUE) and self-dual quaternion random matrices by the 
Gaussian symplectic ensemble (GSE) [l-51. The first of these arises in the absence of 
spin or magnetic fields [ I  1-15] and explains statistical properties of the metallic spectra of 
electrons in random potentials, whereas if time reversal invariance is broken, for example 
by switching on a magnetic field, the resulting system is described by the CUE. Finally 
an electron with half-odd integer spin in a random potential with spin-orbit scattering 
represents a system associated with the GSE, which conserves the time reversal invariance 
but is not invariant under spin rotations. By convention, the three ensembles are classified 
by a universality class index 0. which takes the values p = 1. 2 and 4 for the GOE, CUE 
and GSE respectively. Anderson localization corresponds to f i  = 0 and is not described by 
RMT, being associated with the tight-binding random matrix ensemble (TBRME) describing 
electrons in low-dimensional solids andor  large disorder [ 161. Perhaps the most striking 
prediction of RMT is a universal reduction of mesoscopic conductance fluctuations by a 
factor 1/p when changing from GOE to one of the other universality classes 1171. 

A simple statistical quantity which can be used to distinguish between the three 
universality classes and also to characterize the localization properties of quantum 
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Hamiltonian systems is the nearest-level spacing distribution function P(s).  For delocalized 
eigenfunctions in the presence of spin rotation or time reversal invariance, P ( s )  obeys 
the well known Wigner surmise law Pw(s) = (CgsP)exp(-DgsZ), where C, and Os 
are constants, chosen such that Pw(s) is normalized and (s) = 1. This form of Pw(s) 
arises from the fact that the space filling delocalized eigenfunctions overlap each other, so 
that the corresponding eigenvalues exhibit level repulsion and the spectrum is smooth, 
rigid and correlated. When used to describe the eigenvalue statistics of transmission 
matrices belonging to disordered conductors [ 11-15], the above form of P ( s )  immediately 
predicts the existence of universal conductance fluctuations in mesoscopic metallic systems. 
The correlated nature of the spectra corresponding to p > 0 is embodied in the small- 
s behaviour of Pw(s), which takes the form Pw(s) M s@ and therefore vanishes at 
s = 0. In contrast, pointlike localized eigenfunctions are non-overlapping in space and yield 
uncorrelated spectra with eigenvalues obeying normal Poisson statistics, P(s)  = exp(-s). 
The association of delocalized states with Wigner-Dyson statistics and localization with 
Poisson statistics is quite rigorous and the point in the spectrum where the eigenvalues 
change their distribution [ 14. 151 coincides with the mobility edge. 

All of the above results have been derived by studying normal systems only. For 
inhomogeneous conductors incorporating both normal and superconducting regions recent 
experiments and theoretical work [19, 181 have shown that coherent transport phenomena, 
such as universal conductance fluctuations, can also be observed. I n  this paper we consider 
the less understood case of spectral fluctuations in the presence of superconductivity, where 
normal state transport theory must be generalized [ZO, 211 to account for the absence of 
quasiparticle charge conservation. This is due to the phenomenon of Andreev scattering 
(AS) [22] whereby a quasiparticle, incident on a superconducting surface from a normal 
material, can be reflected into its time-reversed counterpart. Recently superconductivity- 
induced Anderson localization was found in one-dimensional systems 1231 but not in two 
dimensions, where a line of critical points was obtained 1241. In what follows we show that 
in the presence of Andreev scattering, both the mesoscopic and the localization descriptions 
become inappropriate and a distribution P,&) emerges which is distinct from both the 
Wigner and Poisson distributions appropriate to normal conductors. It is shown that this 
novel distribution survives in the presence of weakdiagonal disorder and turns into a Poisson 
distribution for strong disorder, indicating the presence of a localization transition. 

2. The random matrix models 

In this section, we briefly summarize some common classes of random matrices, whose 
spectra are described by RMT and write down generalizations of these in the presence of 
AS. The simplest example is a random matrix belonging to the COE, which, in terms of an 
arbitrary orthogonalized basis set (In), n = 1,2, ,., N), is of the form 

J T Bruun el a1 

Y L, 

The matrix elements = H:,n = Hm," are independent identically disbibuted random 
variables, chosen from a Gaussian probability distribution of mean zero and fixed variance. 
The GOE is exactly solvable for both ensemble-averaged properties, such as the averaged 
density of states ( p ( E ) )  which is approximated by a simple semicircle law and for the 
nearest-level spacing distribution function P ( s )  approximated by the Wigner surmise [l-51. 
It is interesting that the form of the P ( s )  function can be obtained by diagonalizing matrices 
of size as small as 2 x 2 [3]. 
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The above matrix differs from tight-binding Hamiltonian matrices used to describe 
electrons in disordered solids, since the latter typically possess only nearest-neighbour, off- 
diagonal couplings. For this reason, the GOE does not describe phenomena such as Anderson 
localization [16]. For electrons in disordered solids, the appropriate matrix representation 
is the TBRME [ I  1-15], which in the absence of spin effects consists of random real and 
symmetric matrices, which are both short ranged and sparse, reflecting the finite range of 
the interactions. Such matrices are of the form 

(2) 

where n labels all the N = Ld sites of a d-dimensional lattice with linear size L and the 
second sum is taken over all nearest-neighbour pairs ( n .  m )  on the lattice. Usually one deals 
with a closed sample, with boundaries impermeable to electrons, so that the spectrum is 
discrete. The random on-site potential e, is a uniformly distributed random variable, from 
-WIZ to W / 2 .  while V,,m are off-diagonal matrix elements of magnitude unity (Vn,m = I). 
For E = 0 eigenfunctions the critical disorder is W, Y 16.5 in d = 3, with all states 
becoming localized for W z W,. The GOE limit is strictly approached by the TBRME only 
for infinite space dimensionality d = CO, when both the diagonal ( E . )  and off-diagonal (VnJ 
matrix elements are randomly chosen from appropriate probability distributions. However 
in the presence of weak disorder, even for finite d, the GOE can effectively replace the 
TBRME, since the TBRME for small W and d > 2 has random delocalized states, which 
are described by the Wigner-Dyson statistics. Therefore, in the mesoscopic regime all the 
known results for the GOE carry through and explain the measurable fluctuation phenomena 
in metallic conductors of size smaller than other characteristic decay lengths [11-15]. In 
the presence of Andreev scattering (AS) generated by spin singlet, local s-wave pairing, the 
Hamiltonian which appears in the Bogoliubov-de Gennes (BDG) equation has the form 

Ho = x e n l n ) ( n l  + C V n . m b ) ( m l  
n (n.m) 

H = ( Z  -HE " )  (3) 

where A is a diagonal order parameter matrix with elements A.. In what follows 
we examine three distinct examples: (i) a normal system with An = 0 for all n ,  (ii) 
homogeneous superconductivity for which An = A0 =constant and (iii) the inhomogeneous 
superconducting case for which A, = Aoexp(i0,), where 0, is a random variable uniformly 
distributed between -x and x. 

3. The level spacing distribution function PA&) in the presence of Andreev scattering 

In order to understand the nature of the fluctuations in the presence of AS we first derive the 
level spacing distribution Pis(s) for the smallest possible matrix describing a homogeneous 
superconductor with more than one particle degree of freedom. The smallest such random 
matrix is of the form of equation (3), with 

and 
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where HI 1, Htz and HZZ are Gaussian random variables with zero mean and variance uz = 1 .  
The eigenvalues of Ho are 

J T Bruun ef al 

and the corresponding eigenvalues of H 

E, = fJG. (7) 
If the indices i label the four eigenvalues in ascending order, then the level spacings are 

S; = E;+] - E , .  (8 )  
In what follows, we derive the distribution P&(s) for the corresponding normalized spacings 
s, , defined by 

3; = S i / ( S ) .  (9) 
The first step in the derivation is to show that for a large system, the relative level spacing 
si in the superconductor is identical to that obtained by setting A0 = 0, where the resulting 
spectrum E; is obtained by adding the eigenvalues of Ho to those of -Ho. This folded 
specmm has spacings 2 = ( E ; + ]  -6;) and will be shown to possess a distribution, distinct 
from both Poisson and Wigner statistics. 

To this end one notes that from equation (7). 
E:+[ - E! = - E ;  (10) 

and hence 

In the limit of a large number of levels, where the spacings between adjacent levels tend to 
zero. 6,+1 E 6i and E,+[ Y E,. Hence 

( 1 1 )  
Ei (Ei+i - E;)  E ( E ; + [  - E ; ) - .  
E, 

The density of states i n  the normal system no(<) is related to the density of states n ( E )  of 
the homogeneous superconductor through the equality 

no(<) dc = n ( E )  dE. ( 1 2 )  
Hence from equation (7), 

Substituting this into equation ( 1  1)  yields 

or, in terms of the level spacings, 

S;n(Ei) 2 S,nO(c;). 

Since the mean level spacings are simply the reciprocal of the density of statcs, 
(Si)  = I / n ( E ; )  and (Sp) = l/no(Ei), one obtains for the relative spacings 
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or equivalently 

(17) 
This proves that the relative level spacings of a normal folded spectrum are identical to 
those of the BDG Hamiltonian with a uniform order parameter. As a consequence one need 
only study the folded spectrum of Ho in order to determine the level density function P a ( s )  
for the superconducting system. From equation (6). the two energy levels of Ho are 

0 s; = s; . 

a 6  
€ * = - & -  

2 2  
where 

= €211 + Ha 
and 

6 = ~ ( H I I  - H& +4H:,. (20) 

The level spacing is simply S = 6, and has been discussed in detail elsewhere 1171. In 
contrast, the folded spectrum corresponds to the the two levels Q and their partners -c&. 
As shown in figure 1, four distinct combinations can now arise, depending on the relative 
values of LY and 6. In each case, there are two distinct level spacings, SI and Sz, with the 
spacing SI occurring twice as often as SZ. The conespondmg values of Si are shown in the 
table 1. 

Table I. The folded spacings. 

Q) 6 a-6 a > S  
(ii) 6 -(a+6) a c - 6  
(iii) a - @ - a )  o < a < s  
(iv) -a a t 6  - S < a < O  

To obtain the distribution PAS of this folded spectrum we write y = H I ,  - Hn and 
make a transformation from ( H I ] ,  Hu, HIZ) to (a. 6, y) ,  Since HII. Hz2 and Htz = HZI 
are Gaussian variables with joint distribution P ( H I I ,  HZZ, H I Z )  = (Zx~~)-~/~exp{-[H,2,  + 
H& + H&1/(2uZ)) and the Jacobian of the transformation is ld/8Hl21, this yields for the 
joint distribution of (or, 6, y )  

where 0 ( x )  is the Heaviside function. Integrating over all y yields 

P(a, 6 )  = P(LY)P(S) (22) 

P(LY)  = (4xu2)~’~zexp(-or2/4uz~ (U) 

where 

and 
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ii) a<-6 i) a > b  

,, 
', 1 L_ _ _  - ----. 7, 

-E+  '- E- 
......................... I s*  ...... * = 0  ................ l S I  ......... 

A Folded Two-Level System 
Figurc 1. A folded two-level syslern 

where, after writing y = Ssin0 ,  

f(6) = 6 /z'2 d 0 e ~ p ( - 6 ~ s i n ~ 8 / 8 u ~ )  = rrSexp(-62/16u2)J~(-iSZ/16u2) 

with J&) a zeroth-order Bessel function of the first kind. This yields f(6) %, n6 for small 
6 and f(6) x ( 8 n d ) ' P  for large 6. 

In table I. situations (i) and (iii) corresponding to (U 2 0 are idenlical lo possibilities 
(i i)  and (iv) with (U < 0 and therefore only positive (U need be considered explicitly. Since 
the distributions of the Level spacings St and Sz are given by 

Pi(S)  = / / d a d 6  S(Si (a ,6 )  -S)P(u)P(S)  (26) 

( 2 3  
- n / 2  

one finds 

PI(&) = 2 1  1 doldSP(w)P(G)(O(a - 6 ) 6 ( 6 -  S,) 
" 

0 



Universal level statistics in the presence of Andreev scattering 4039 

Given that SI occurs twice as often as S?, the distribution of S is 

P m  = +Pl(S) + $Pz(S). (29) 

After evaluating the integrals numerically, the distributions for the normalized spacing 
s = S/(S), namely Pis@) = (S)PAS(S), PI(s) = ( S ) P j ( S )  and &(s) = ( S ) P z ( S ) ,  are 
as shown in figure 2(a). As an aside, it is interesting to note that for the purpose 
of computing P&(s(s), the distribution P ( 8 )  of equation (24) is approximately given 
by p ( 6 )  = [ 6 / ( 3 ~ ~ ) I e x p [ - [ ~ ~ / ( 6 ~ ~ ) 1 } .  Figure 2(b) shows a comparison between this 
approximate form and the exact result (24). In the integrals on the right-hand side of 
equations (27) and (28), if this approximate from were used instead of (24), then on the 
scale of the line thickness used in figure 2(a). the result for P&(s) is found to be unchanged. 

6 
Wgure 2. Figure Z ( P )  shows the predicted distributions for the folded spectra: P ~ s ( s )  (solid 
line), P I ( s )  and Pz(r) (dashed and dash-dotted respeclively). The OOE stvslic (dotted line) 
is shown for comparison. The solid line of figure 2(b) shows a plot of the right-hand side of 
equation (a), while the dshed line is a plof of the function [S/(3nZ)1exp([-S2/(6nz)1). 

In what follows we refer to P&(s) as the folded distribution of the two-level system 
described by Ho and compare this with the distribution PAS($) obtained by folding a GOE 
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spectrum. To this end we now present results obtained by numerically diagonalizing N x N 
symmetric matrices of the form shown in equation (1). The method of calculation relies 
on the numerical computation of the eigenvalues E j ,  with j = I ,  2, ..., N obtained from 
the finite-size matrices H in the appropriate matrix ensemble. Then by allowing the matrix 
size N to vary we determine the large-N behaviour. P ( s )  can be numerically obtained 
by considering the distribution of the differences (JV(E,+~)) - (N(E,)) = ( E ~ + I  - Ej )  
( i l /aE)(N(E)) ,  where (N(E)) is the averaged integrated DOS at the energy E .  Our 
numerical results for normal systems agree well with the Wigner surmise and the Poisson 
law for the delocalized and the localized phases, respectively [ I  1-15]. An intermediate- 
scale invariant distribution which interpolates between the two limits was obtained in this 
critical case [14]. Figure 3 shows the distribution P ( s )  of the unfolded spectrum of Ho, 
obtained from 1000 realizations of matrices of size N = 50. The GOE (dashed line) and 
Poisson (dotted) distributions are shown for comparison. Figure 4 shows results for the 
folded spectrum of Ho. The numerical result for the distribution PAS@) is the somewhat 
noisy solid line of figure 4. This distribution was obtained by diagonalizing matrices of size 
N = 100 and an ensemble of 10000 realizations. On the same graph, the analytical result 
Pls(s) of equation (29) is shown as a solid black line and for comparison the dotted line 
shows the Wigner distribution Pw(s). It is immediately apparent that the two-level folded 
distribution P i s ( $ )  yields the qualitative features of the large-N spectrum PA&). 

J T Bruun et a1 

Figure 3. Thc compulrd dirlnbuuan for 
P symmemc H m l t o m m  (unloldcd) of 
the form shown in equilion (1) The 
miuix dimcnrion is N = 50 and 1000 
r a l u u o n s  of thd witem ucic used. 

010 0.5 1.0 1.5 2.0 2.5 3.0 For comparison fhe dashed and doffed 
lines show GO EM^ Poisson distribution. S 

The distributions obtained by folding GOE, CUE, GSE and TBRME spectra are the 
replacements of the unfolded spectra in the presence of Andreev scattering. In figure 5 we 
illustrate results for the TBRME in d = 3 obtained for lattices of size Ld with L = [6.8, 101, 
disorders W = 10 and 30. The statistics were obtained from an ensemble of 10000 or more 
random matrices. The order parameter was fixed in each case to Ag = 0.1 and the energies 
varied over a narrow window about E = 0. From the size variation we obtain the universal 
curve PAS for W = 10 (figure 5(a)) and asymptotically the Poisson exp(-S) law in the 
case of W = 30 as shown in figure 5(b). This indicates that in the presence of Andreev 
scattering, the Anderson transition occurs at a value of W greater than the normal critical 
disorder W, = 16.5. 
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S 
Figure 1. The noisy solid line shows the distribution PAS(.?) for ule folded spectrum of a 
Gaussian random symmetric Hamiltonian. obtained from IOOW realizations of matrices of size 
N = 100. The smwth solid line shown is the analytical curve for the two-level folded system 
PAs(s). For comparison the dotted line shows the GOE distribution. 

4. The transmission eigenvalue spectrum 

Having demonstrated that the level spacings of the BDG operator possess a new distribution, 
which is distinct from the well known Wigner and Poisson distributions, we now examine 
the level statistics of the generalized transmission matrix product t't'', where t' is the general 
transmission matrix for a multichannel two-prohe conductor that incorporates both normal 
and Andreev scattering. This matrix is obtained from the full scattering matrix S(E)  which 
has the structure 

[ ; (30) 

The submatrix t' which characterizes transmission from one side of the scatterer to the other 
has the form 

where if mP(E)  is the number of propagating channels for excitations of type f3 
( B =  + I  for particles, - 1  for holes), the subblocks have dimensions m+(E)  x m + ( E )  for 
tpf, m+(E)  x m - ( E )  for fphr, m - ( E )  x m+(E) for fhp' and m-(E)  x m - ( E )  for t ~ , .  
The eigenvalues of this matrix are {et: i = I .  2.  ..., m+(E)  + m - ( E ) )  and lie in the range 
0 < e; < 1. For convenience these transmission eigenvalues are arranged so that 
el  < e2 < ... c @ c ~ + ( E ) + ~ - ( E ) ~ .  For a normal system they are related to the the two-probe 
conductance G via 

m+(E)+m-(E)  

G = Trt't" = ei. (32) 

In what follows the scattering matrix of square tight-binding systems will be evaluated 
numerically using the technique outlined in appendix 1 of [21]. The systems are described 

i = l  
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1 .o 

0.0 
0.0 1 .o 2.0 3.0 

S 

Figure 5. The results for the mum in d = 3 dimensions in the presence of Andrew scattering 
for disorder strengths mrresponding IO delocalized (W = IO) (a) and Iodized ( W  = 30) values 
(b). Resu1l.s for three system size3 Ld with L = [6.8, IO] are shown. The horizontal axis 
has units of the local mean level spacing and the smooth CUNS are the GOE (dashed line) and 
Poisson distributions (dot-dashed line). 

by equation (3), with Ho given by equation (2) and results for the three examples introduced 
at the end of section 2 will be presented. In each case, diagonal disorder W is present, 
but there is no disorder in the magnitude of A. In the first set of results. the behaviour 
of a 10 x IO square is considered. The disorder is fixed to the value W = 1 .  so that the 
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system is diffusive in nature. For the normal model, the energy E i s  varied and in the two 
superconducting models both E and AO are varied. For the range of E studied, there are 
nine particle and hole propagation channels, i.e. m+(E) = m - ( E )  = 9. 

1.0 

tWt; (sofid fine) 

td,' (doshed line) 
0.75 

0.5 

0.25 

0.0 
0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

S 
Figure 6. Degenerate distributions of transmission eigenvalue spacings for the panicle-particle 
(solid line) and hobhole (dashed) mtrices of a normal system. These results were obtained 
for IO x 10 s q u m .  with disorder W = I. E = 0 and SOW realizations. The dotted line shows 
the GOE distnbution. 

Figure 6 shows results for a normal system (A0 = 0). obtained from 5000 realizations 
at E = 0. In this case, the particle and hole degrees of freedom are decoupled and therefore 
the transmission eigenvalues of the particleparticle or hole-hole matrices tppJtj$ and rbvt& 
should separately exhibit GOE statistics. Figure 6 shows results for the spectral properties 
of the separate matrices tpp,tpp. and thhJtib,  respectively and that the two distributions, to 
within numerical accuracy, are degenerate and coincide with a GoE. This degeneracy is 
guaranteed by particle-hole symmetry at E = 0. As a consequence, after combining the 
transmission eigenvalues for the two degenerate systems, the level statistics for t't'' take 
the form of a standard GOE plus a Dirac S function at s = 0. In what follows this combined 
distribution will be denoted DGOE. At E f 0, particles and holes are no longer degenerate 
and the combined spectrum of t't''(E) is no longer of the form DGOE. Figure 7 shows 
the combined spectrum of the normal system used in figure 6, except that E = 0.15 and 
1000 realizations were used. Since A0 = 0, the distribution shown in figure 7 is obtained 

through the graph is the analytic two-level approximation P&(s). These results indicate 
that the folded distribution Pis&) describes the qualitative features of the transmission 
eigenvalue spectrum, provided the degeneracy due to particle-hole symmetry is lifted. As a 
consequence of this change in statistic, there will be a crossover from a PAS($) distribution 
to a DGOE as the energy E tends to zero. An example of this crossover is given in figure 
8, which shows results for two energies E = 0.15 and 0.005. 

Unlike the spectrum of H, there is no reason to suppose that the level spacing distribution 

t 

by combining the spectrum of fw,i~p.  with that of iwthh'. t For comparison the smooth line 
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0.8 

0.7 I 
E = 0.15 

0 1 2 3 4 5 

S 
Figure I. Transmission eigenvalues of tY'. with Ao = 0. Parameter values are I for figure 6 ,  
except E = 0.15 and IWO realizations. For comparison Ihe smooth line shows Pk(s).  

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

S 
Figure 8. This figure shows the C ~ O S S O V ~ I  from sm to WOE. Parameter values are as lor figure 
7. Resulrs lor two energies are shown. E = 0.1.5 and E = 0.005. 

of the transmission eigenvalues is independent of Ao. Therefore having considered the case 
A. = 0 we now present a selection of results for systems with diagonal disorder W = 1, 
but with a uniform order parameter. Figure 9 shows results obtained from 1000 realizations 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 

S 
Figurc 9. The distribution of transmission eigenvalue spacings P(s)  for a homogeneous 
superconductor. For hear calculations. M = 10, W = I a d  IO00 realizations were used. 
Two different systems are depicted. ( E . A o )  = (0.15.0.2) as the solid fluctuating line and 
(0.1.0.0) JS the dashed line. 

of a system with ( E .  Ao) = (0.15.0.2). For comparison the smooth line is this figure is 
the GOE distribution. The statistic of s for this choice of ( E .  Ao) can thus be identified 
with the GOE, which implies that as A. increases from zero there is a crossover from the 
PAS(S) statistics of the normal-disordered E # 0 conductor shown in figure 8 to the GOE 
shown in figure 9. Also shown in this figure as the dashed line is a distribution obtained 
with ( E .  Ao) = (0.1,O). The above transition from GOE to PAS@) occurs for E > 0, 
with increasing Ao. Since particle-hole symmetry at E = 0 forces the spectrum to be 
doubly degenerate, there must also be a transition from GOE to DGOE for A0 =- 0, but 
E + 0. Examples of this transition are presented in figure 10, which shows distributions 
for ( E ,  A,) = (0.15.0.1) (solid line) and ( E ,  Ao) = (0.01.0.1) (dashed line). 

Having considered the case of a homogeneous order parameter, we now examine the case 
of an inhomogeneous superconductor for which An = Aoexp(ie.), where 0, is a random 
variable uniformly distributed between --R and 7r. Figure 11 shows results obtained from 
1000 realizations of a system with ( E .  Ao) = (0.22,O.ZZ). For comparison, since this 
model breaks time reversal symmetry, the smooth line shows the CUE distribution. As 
A0 + 0, time reversal symmetry is restored and therefore one expects a CUE to PAS@) 
crossover to occur. This is illustrated in figure 12, for three sets of parameters which 
have a common energy and varying A. as ( E ,  Ao) = (0.1,0.2), (0.1,0.06) and (0.1.0.0) 
corresponding to the solid. dotted and dashed lines respectively. Similarly as E + 0, 
particle-hole symmetry forces a double degeneracy on the spectrum. As a consequence a 
CUE to CUE t 6 function (DGUE) transition takes place, as illustrated in figure 13, which 
shows results for ( E ,  A,) = (0.1,O.Z) as the solid line and (0.01,O.Z) as the dashed line. 

The above results demonstrate that as the pair of parameters ( E ,  Ao) is varied the 
level statistics varies between a small number of limiting distributions. To summarize this 
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(A,=O,I) 

E=0.01 

0.1 

0.0 
0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

S 
Figure IO. As for hgurc 9. but with ( E .  A d  = (0.IS.O.l). the solid line, and (0.01.0.1). the 
dashed line 

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

S 
Figure 11. Results for D m d o m  phase superconductor. Far these dcularions M = 10. W = I ,  
( E .  Ao) = (0.22.0.22) and 1000 mlizlizations were used. 

behaviour, it is useful to identify boundaries in the ( E ,  Ao) plane, which determine the 
crossover from one distribution to another. To define these boundaries, we have used the 
standard deviations of he numerically obtained distributions as the natural measure with 
which one can quantify the regions of distinct statistical behaviour. The standard deviations 
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0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

S 
Figure 12. Results for L mdom phase superconductor showing me GUE + SFD mansition. For 
these calculations. lo00 ralimtions were used. M = L = 10, W = I with ( E .  All) = (0.1,0.2), 
(0.1.0.06) and (0.1.0.0) depicted with the solid, dotted and dashed lines respectively. 

Figure 13. Results for a random phase supercandunor showing the GUE -+ DOUE transition. 
For these calculations. 1000 realizations were urd. M = L = 10, W = 1. Two densities for 
( E .  A d  = (0.1.0.2). the solid line. and (0.01.0.2). the dashed, are shown. 

a*$, UGOE and UGUE are shown in table 2, along with the value ak for the two-level folded 
distribution Pi&). 



4048 J T Bruun et a1 

0 
' .  1.155 

1.100 
1.045 
0.990 
0.955 
0.880 

- 0.825 - 0.770 
0.715 
0.660 
0.605 

- - - 
- 

- 
- - 

W 

0.10 

0.05 

0.00 0.05 0.10 0.15 0.20 0.25 

Figure 14. Contours of conscant standud deviation for the distribution of msmission 
eigenvalue spacings of a homogeneous superconductor. The solid lines we the estimates of 
the boundtuies between regions occupicd by different limiting distributions. The value of ,, for 
the contour which intersects the Ao = 0.25 axis at lhe hizhw value of E is 0.605. The contour 
intersecting this axis ar the next-highest value of E corresponds Io (r = 0.660. Table 2 shows 
the vdues of n associared with these md lhe other contours. 

In what follows. all resulw: for U are calculated from an ensemble of 1000 realizations 
of IO x IO squares, with W = 1. Figure 14 shows results for the contours of constant U for 
a homogeneous superconductor with a real order parameter. The thick solid lines are crude 
estimates of the boundaries at which a crossover from one distribution to another occurs. 
The regions occupied by the three distributions, namely GOB, SFD and DCOE are marked in 
the figure. Figure 15 shows the corresponding results obtained in the presence of random 
order parameter phases, unifomily distributed over fn. In this case the thick solid lines 
are estimates of the boundaries between regions occupied by four different distributions, 
namely CUE, SFD, DGUE and DGOE. 

5. Discussion 

In this paper, we have reported the results of a study of the spectral eigenvalue statistics of 
the Bogoliubov-de Gennes Hamiltonian and of the associated transmission matrix t't". The 
nearest-level spacing distribution function P(s )  has been evaluated numerically for both a 
folded symmetric random Hamiltonian Ho and the transmission matrix t't''. We have shown 
that in the presence of Andreev scattering, a distribution PAS@) emerges which describes 
the level density fluctuations of mesoscopic superconductors. An approximation to this 
distribution has been obtained by folding the metallic spectrum of a two-level system about 
E = 0. We have also examined the folded spectrum of a TBRME in three dimensions. 
As the disorder is increased, this crosses over from a GOE folded spectrum described 
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Figure 15. As for figure 14. but for an order parameter with random phases. 

by PAS@) to a Poisson distribution, but only at much larger values of disorder than the 
corresponding normal system. This indicates that the presence of a homogeneous order 
parameter suppresses Anderson localization. 

Table 2. Standard deviations d of vaiiious disuibutions. 
consmt W E  GUE PAS Pi’< 
“ “GO5 = d O U E =  CAS = fils = 

0.523 0.422 0.706 0.779 

For simplicity we have restricted the analysis to the level spacing distribution P ( s ) .  
For the future it will be of interest to verify the universality of the new folded distribution 
for other eigenvalue statistical measures such as the number variance and the two-point 
correlation function. It is also of interest to obtain a detailed understanding of the boundaries 
between the different distributions, shown in figures 14 and 15. In this paper we have merely 
pointed out the existence of these crossovers, without relating them to other characteristic 
energies such as the level spacing or Thouless energy. A detailed numerical investigation 
of the behaviour of these boundaries with system size and disorder remains to be carried 
out. Finally, it will be of interest to study the effect of fluctuations on the magnitude of the 
order parameter. For conventional superconductors, these can occur on a scale many orders 
of magnitude greater than the lattice constant and therefore need not induce significant level 
repulsion amongst states above the gap. 
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